The Chemical Reactivity of Toluene 3,4-dithiol towards Coordinated Aluminumtrimethyl

A. A. CAREY and E. P. SCHRAM

Evans Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210, U.S.A. Received July 31, 1981

Treatment of $Me_3Al \cdot L$ (where L is NMe₃, HNMe₂, H₂NMe and OEt₂) with toluene 3,4-dithiol was investigated in an effort to isolate the corresponding dithiolate cyclic derivatives, TDTAlMe · L. This goal was achieved where L is HNMe₂, whereas with NMe₃ rearrangement of the desired product took place to afford (TDT)₃Al₂ · 2NMe₃ and AlMe₃ · NMe₃. In the case where L is H₂NMe, the product was polymeric. Employment of the complex with L = OEt₂ results in evolution of one or two equivalents of CH₄ with the results dependent on the solvent employed.

Introduction

We have previously reported the reaction of toluene 3,4-dithiol, H₂TDT, with aluminumtrimethyl, AlMe₃, [1] aluminum trichloride, AlCl₃, [2] and dimethylaluminum chloride, Me₂AlCl [2]. With the methylaluminum species, TDTAlMe and TDTAlCl are produced respectively, whereas AlCl₃ affords 2,7-dimethylthianthrene radical cation. Both TDTAIMe and TDTAICI are highly associated as inferred by their respective insolubilities in common solvents. In an effort to produce soluble AlS₂ cyclic species, the reactivity of H₂TDT towards AlMe₃ adducts, $AlMe_3 \cdot L$, was examined where $L = HNMe_2$, H_2NMe , NMe_3 and OEt_2 .

Results and Discussion

Treatment of $Me_3Al \cdot L$ with H_2TDT was effected and the results summarized by eqn. (1). When L is HNMe₂, this system was investigated in the solvent

$$H_2TDT + Me_3Al \cdot L \rightarrow TDTAlMe \cdot L + 2CH_4$$
(1)

systems cyclopentane, methylcyclohexane, cyclohexane, benzene, and methylene chloride. When aliphatic solvents are utilized TDTAlMe·HNMe₂, I, was produced in the form of a white crystalline precipitate. The employment of both CH_2Cl_2 and C_6H_6

0020-1693/82/0000-0000/\$02.75

resulted in yellow brown solutions of I, the ¹H NMR spectra of which change with time.

Hydrolysis of crystalline (I) is summarized by eqn. (2) and is indicative of the presence of the Me moiety

TDTAlMe \cdot HNMe₂ + 3H₂O \rightarrow

 $CH_4 + Al(OH)_3 + organic residue$ (2)

on Al, *i.e.* evolution of CH₄. H₂TDT could not be isolated from the organic residue most likely because of its subsequent reaction with *in situ* HNR₂ [3, 4]. Hydrolysis of I was also carried out in HCl in an effort to decrease the reactivity of HNR₂ towards liberated H₂TDT, with the same results as represented by equation (2).

The infrared spectrum of TDTAlMe+HNMe₂ clearly indicates the presence of $\nu N-H$ at, 3200 cm⁻¹, with reference to Me₃Al·HNMe₂, 3260 cm⁻¹, and the absence of ν S-H found at 2533 cm⁻¹ in H₂TDT. The ¹H NMR spectrum of TDTAlMe· HNMe₂, at 25 °C in CH_2Cl_2 , consists of singlets at 3.53 (broad), 2.35, 2.16 and -0.44 ppm in the ratios 1:6:3:3 respectively, and are assigned to H-N, Me₂N, Me-aryl and Me-Al respectively. At -70 the absorption centered at 2.48 ppm splits into a doublet, J HNMe = 5.1 Hz. With time TDTAlMe HNMe₂ decomposes in CH_2Cl_2 as evidenced by the fact that a new high field absorptions appears at -0.80 ppm, MeAl. This decomposition behavior was not observed for HCCl₃ solutions. The ¹H NMR abosrption at -0.80 ppm was also present in samples of TDTAlMe ·HNMe₂ prepared in CH₂Cl₂ and benzene, therefore the preferred method of preparation utilized alkane solvents with the reagents under high dilution.

With reference to eqn. 1, when $L = OEt_2$ and Et_2O is employed as the solvent only one mol CH_4 is initially liberated per mol $Me_3Al \cdot OEt_2$. However, during removal of OEt_2 , even at -20 °C, rapid evolution of the second mol of CH_4 takes place. TDTAlMe $\cdot OEt_2$, II, is insoluble in Et_2O and common aromatic and aliphatic solvents. Treatment with $HCCl_3$ affords CH_4 and the ¹H NMR spectrum of the resulting solution indicates loss of complexes Et_2O from the aluminum center: Calcd. for TDTAl·

© Elsevier Sequoia/Printed in Switzerland

 $O(C_2H_5)_2$, Me(ether)/Me(aryl) = 2, and CH₂(ether)/ Me(aryl) = 1.37; found 1.3 and 0.8. (*Me* aryl, 2.22 ppm; *Me* ether, 1.15 ppm; and *CH*₂ ether, 3.43 ppm).

Hydrolysis of II is summarized by eqn. (3) and resulted in formation of H_2TDT . Treatment of II

TDTAlMe
$$\cdot$$
 OEt₂ + 3H₂O \rightarrow

$$CH_4 + H_2TDT + OEt_2 + Al(OH)_3$$
(3)

with HCl was carried out in an effort to effect Me-Cl exchanges, *i.e.*, produce the chloroaluminum derivative, and these results are summarized by eqn. 4.

$$TDTAlMe \cdot OEt_2 + HCl \rightarrow TDTAlCl \cdot OEt_2 + CH_4$$
(4)

Furthermore, H_2TDT was recovered in high yield after hydrolysis of the reaction product, eqn. 4, indicating that alkylation of the aromatic systems did not take place during treatment of II with HCl, eqn. 4.

With reference to eqn. 1, when $L = H_2NMe$ or NMe_3 , two mol of $CH_4/mol Al$ are liberated, however TDTAlMe·NMe₃ undergoes facile rearrangement with quantitative evolution of Me₃Al·NMe₃, equation 5.

$$3TDTAlMe \cdot NMe_3 \rightarrow Me_3Al \cdot NMe_3 +$$

+
$$(TDT)_3Al_2 \cdot 2NMe_3$$
 (5)

The latter was identified by comparison of its IR spectrum with an authentic sample. Furthermore, the ¹H NMR spectrum of the non-volatile reaction residue, in CH₂Cl₂, lacked a *Me*Al absorption, *ca.* -0.5 ppm; the observed absorptions are consistent with the stoichometry (TDT)₃Al₂·2NMe₃, *i.e.*, NMe at 2.56 ppm and aryl-Me at 2.16 ppm in the *ca.* ratio 2:1 respectively.

When one treats initially formed TDTAlMe·NMe₃ with HCCl₃, CH₄ is quantitatively evolved while the ¹H NMR spectrum exhibits absorptions at 2.77 ppm, N-Me, and 2.32 ppm, aryl Me, in the ratio 3:1. Previous studies have indicated that treatment of dithio-late coordinated AlMe with HCCl₃ results in replacement of Me by Cl [1].

With regard to TDTAlMe \cdot H₂NMe, ¹H NMR data could not be obtained because of its insolubility in non-reacting solvents, *e.g.*, treatment with CH₂Cl₂ results in immediate solution, however, a white precipitate forms within a few minutes.

Experimental

Synthetic procedures and equipment employed have been previously described as have analytical methods and purification of some solvents and starting materials [1, 2].

Reagents

Diethyl ether, Anal. Reagent, Mallinckrodt Chemical Works, was dried over phosphorus pentoxide and then lithium aluminum hydride, from which it was distilled before use. Dimethylamine, The Mathe-Company, was dried over sodium and son fractionated prior to use. Monomethylamine, Matheson Company, was purified like dimethyl amine. Trimethylamine, The Matheson Company, was dried over lithium aluminum hydride to remove water and dimethylamine before use. Trimethylaluminumdimethylamine adduct, Me₃Al·HNMe₂, was prepared by condensing HNMe₂ on an equal molar amount of AlMe₃ [5]. The white crystalline product exhibited a ¹H NMR spectrum in benzene with absorptions at 1.48 (MeN) and 1.05 (MeAl) in the ratio 2:3 respectively. Aluminumtrimethyltrimethylamine adduct, Me₃Al·NMe₃, was prepared like the HNMe₂ adduct and exhibits a vapor pressure of 1 torr at 25 °C [5]. Aluminumtrimethylmonomethylamine adduct, Me₃Al·H₂NMe was prepared like the HNMe₂ adduct and is stable toward CH_4 evolution to 45° [6]. Aluminumtrimethyldiethylether adduct, Me₃Al·OEt₂ was preapred by treating AlMe₃ with an equal molar quantity of OEt2. TDTAlMe.HNMe2 was prepared by addition of H₂TDT, 0.781 g (5.01 mmol), dissolved in ca. 30 ml methylcyclohexane, to AlMe₃, 0.3600 g (5.00 mmol), dissolved in ca. 30 ml methylcyclohexane, over a period of several hours. Methane was continuously evolved, total = 9.9 mmol. The white crystalline precipitate was washed, in vacuo, with methylcyclohexane. Anal: Calcd. for TDTAlMe. HNMe₂; Al, 11.2; CH₃ (hydrolyzable) 5.8. Found: Al, 10.9; CH₃, 5.5. IR data: 3200(m), 3020(sh), 2980(vs, nujol), 2880(vs, nujol), 2720(w), 2490(w), 1605(w), 1480(s, nujol), 1370(s, nujol), 1280(s), 1120(s), 1045(m), 995(s), 870(m,sh), 810(s), 760(m,br), 670(m,br), 590(m), 560(s), 540(sh), 520(w), and 460(w) cm⁻¹. When benzene was employed as the common solvent, near stoichiometric evolution of CH4 was observed, however the products afforded a yellow brown solution. Solvent removal resulted in formation of a yellow-brown glass from which crystalline TDTAlMe.HNMe₂ could not be recovered via attempted recrystallization from mixed alkane-benzene systems or from CH₂Cl₂. TDTAlMe. H₂NMe was prepared in cyclohexane analogous to that of TDTAlMe. HNMe₂ to afford a white crystalline with evolution of 1.96 CH₄/Al. The product was insoluble in benzene, CCl₄ and CHCl₃ but initially soluble in CH₂Cl₂ affording a white precipitate within minutes. This material was not investigated further. TDTAlMe.NMe3 was prepared analogous to that of TDTAIMe. HNMe₂ to afford 1.95 CH₄/Al. The white crystalline product was unstable at 25 °C affording volatile AlMe₃.NMe₃ which was identified by comparison of its IR spectrum with that of an authentic sample. The non-volatile residue, (TDT)₃Al₂·2NMe₃,

exhibited a ¹H NMR spectrum in CH₂Cl₂ consisting of absorptions at 2.16 (Me-aryl) and 2.55 (MeN) in the ratio 1:2 respectively. IR data (nujol): 3020(vs), 2980-2920(s), 1605(m), 1470(s), 1380(s), 1290(s), 1210(m), 1115(m), 1060(s), 865(s), 810(s), 650(m), 580(s), 540(s), 475(m), and 440 cm⁻¹. TDTAlMe. NMe₃, 1.1 g (4.3 mmol) was treated with 3 ml CHCl₃ at 25 °C to afford CH₄, 4.2 mmol.

TDTAlMe \cdot OEt₂, was prepared by addition of H₂-TDT, 0.967 g (6.20 mmol), in 25 ml cyclopentane, to AlMe₃, 0.447 g (6.21 mmol), in 30 ml cyclopentane, to afford 11.8 mmol CH₄. TDTAlMe.OEt₂ was washed with cyclopentane to afford a pale pink glass which was insoluble in CH₂Cl₂, cyclopentane, and benzene. Reaction of TDTAlMe.OEt2, 0.932 g (3.45 mmol) with H₂O affords 3.38 mmol CH₄ and H₂TDT which was recovered by extraction of the hydrostat in CCl₄ followed by sublimation at 25 °C, and characterization by comparison of its IR spectrum with an authentic sample, yield 0.50 g (3.2 mmol). Treatment of TDTAlMe.OEt₂, 2.45 mmol, neat with HCl gas (2.90 mmol) at 24 °C over a one week period of time affords 2.32 mmol CH₄. Hydrolysis of the residue affords no additional CH₄

while extraction of the organic residue with CCl₄ results in the isolation of H₂TDT which was identified by its IR spectrum. Attempted solution of TDTAlMe.OEt2, 2.22 mmol in CHCl3, 5 ml, results in CH₄ evolution, 2.12 mmol.

Acknowledgement

Support of this study by the Ohio State University is appreciated.

References

- 1 A. A. Carey and E. P. Schram, Inorg. Chim. Acta, 59, 75 (1982).
- 2 idem., 79 (1982).
 3 M. E. Peach, 'The Chemistry of the Thio Group', Part II, S. Potai, Ed., Wiley, New York, N.Y., 1974, p. 721.
- 4 S. Oal, 'Organic Chemistry of Sulfur', Plenum Press, New York, N.Y., 1977, p. 157.
- 5 N. Davison and H. C. Brown, J. Am. Chem. Soc., 64, 316 (1942).
- 6 K. J. Alford, K. Gosling and J. D. Smith, J. Chem. Soc., Dalton, 2203 (1972).