The Chemical Reactivity of Toluene 3,4-dithiol towards Coordinated Aluminumtrimethyl

A. A. CAREY and E. P. SCHRAM

Evans Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210, U.S.A. Received July 31,198l

*Treatment of Me3Al*L (where L is NMe3, HNMez, HzNMe and OEt,) with toluene 3,4-dithiol was investigated in an effort to isolate the corresponding dithiolate cyclic derivatives, TDTAlMe- L. This goal was achieved where L is HNMe2, whereas with NMe3 rearrangement of the desired product took* place to afford (TDT)₃Al₂ 2NMe₃ and AlMe₃. *NMe3. In the case where L is HzNMe, the product was polymeric. Employment of the complex with L = OEt, results in evolution of one or two equivalents of CH, with the results dependent on the solvent employed.*

Introduction

We have previously reported the reaction of toluene 3,4-dithiol, H_2TDT , with aluminumtrimethyl, AlMe₃, [1] aluminum trichloride, $AIC₁₃$, [2] and dimethylaluminum chloride, Me₂AlCl [2]. With the methylaluminum species, TDTAlMe and TDTAlCl are produced respectively, whereas AlCl₃ affords 2,7_dimethylthianthrene radical cation. Both TDTAlMe and TDTAlCl are highly associated as inferred by their respective insolubilities in common solvents. In an effort to produce soluble $AIS₂$ cyclic species, the reactivity of $H_2 TDT$ towards AlMe₃ adducts, AlMe₃ \cdot L, was examined where L = HNMe₂, H_2 NMe, NMe₃ and OEt₂.

Results and Discussion

Treatment of $Me₃Al·L$ with H₂TDT was effected and the results summarized by eqn. (1). When L is $HMMe₂$, this system was investigated in the solvent

$$
H_2 TDT + Me_3 Al \cdot L \rightarrow TDTAlMe \cdot L + 2CH_4 \tag{1}
$$

systems cyclopentane, methylcyclohexane, cyclohexane, benzene, and methylene chloride. When aliphatic solvents are utilized TDTAIMe \cdot HNMe₂, I, was produced in the form of a white crystalline precipitate. The employment of both CH_2Cl_2 and C_6H_6 resulted in yellow brown solutions of I, the 'H NMR spectra of which change with time.

Hydrolysis of crystalline (I) is summarized by eqn. (2) and is indicative of the presence of the Me moiety

TDTAlMe \cdot HNMe₂ + 3H₂O \rightarrow

$$
CH_4 + Al(OH)_3 + organic residue \qquad (2)
$$

on Al, *i.e.* evolution of CH₄. H₂TDT could not be isolated from the organic residue most likely because of its subsequent reaction with *in situ* HNRz [3, 41. Hydrolysis of I was also carried out in HCl in an effort to decrease the reactivity of HNR₂ towards liberated H_2TDT , with the same results as represented by equation (2).

The infrared spectrum of TDTAIMe \cdot HNMe₂ clearly indicates the presence of ν N-H at, 3200 cm^{-1} , with reference to Me₃Al·HNMe₂, 3260 cm⁻¹, and the absence of ν S-H found at 2533 cm⁻¹ in \mathcal{F} TDT. The $\mathrm{^1H}$ NMR spectrum of TDTAlMe \cdot NMe₂, at 25 °C in CH₂C₁₂, consists of singlets at 3.53 (broad), 2.35, 2.16 and -0.44 ppm in the ratios 1:6:3:3 respectively, and are assigned to $H-N, Me₂N$, Me-aryl and Me-Al respectively. At -70 the absorption centered at 2.48 ppm splits into a doublet, J HNMe = 5.1 Hz. With time $TDTAIMe\cdot HNMe₂$ decomposes in $CH₂Cl₂$ as evidenced by the fact that a new high field absorptions appears at -0.80 ppm, *MeAl.* This decomposition behavior was not observed for $HCCI₃$ solutions. The $\mathrm{^{1}H}$ NMR abosrption at -0.80 ppm was also present in samples of TDTAIMe[.]HNMe₂ prepared in $CH₂Cl₂$ and benzene, therefore the preferred method of preparation utilized alkane solvents with the reagents under high dilution.

With reference to eqn. 1, when $L = OEt_2$ and $Et₂O$ is employed as the solvent only one mol $CH₄$ is initially liberated per mol $Me₃Al·OEt₂$. However, during removal of OEt₂, even at -20 °C, rapid evolution of the second mol of CH₄ takes place. TDTAlMe \cdot OEt₂, II, is insoluble in Et₂O and common aromatic and aliphatic solvents. Treatment with $HCCl₃$ affords $CH₄$ and the ¹H NMR spectrum of the resulting solution indicates loss of complexes $Et₂O$ from the aluminum center: Calcd. for TDTAl.

0020-1693/82/0000-0000/\$02.75

0 Elsevier Sequoia/Printed in Switzerland

 $O(C_2H_5)_2$, Me(ether)/Me(aryl) = 2, and CH₂(ether)/ $Me(ary1) = 1.37$; found 1.3 and 0.8. (*Me aryl*, 2.22) ppm; Me ether, 1.15 ppm; and $CH₂$ ether, 3.43 ppm).

Hydrolysis of II is summarized by eqn. (3) and resulted in formation of H_2TDT . Treatment of II

$$
TDTAIME \cdot OEt_2 + 3H_2O \rightarrow
$$

$$
CH_4 + H_2 TDT + OEt_2 + Al(OH)_3 \tag{3}
$$

with HCl was carried out in an effort to effect Me-Cl exchanges, *i.e.,* produce the chloroaluminum derivative, and these results are summarized by eqn. 4.

$$
TDTAIME \cdot OEt_2 + HCl \rightarrow TDTAICI \cdot OEt_2 + CH_4
$$

(4) Furthermore, H_2TDT was recovered in high yield after hydrolysis of the reaction product, eqn. 4, indicating that alkylation of the aromatic systems did not take place during treatment of II with HCl, eqn. 4.

With reference to eqn. 1, when $L = H_2NMe$ or $NMe₃$, two mol of CH₄/mol Al are liberated, however $TDTA$ lMe \cdot NMe₃ undergoes facile rearrangement with quantitative evolution of $Me₃Al·NMe₃$, equation 5.

$$
3TDTAIME \cdot NMe3 \rightarrow Me3Al \cdot NMe3 +
$$

+
$$
(TDT)3Al2 \cdot 2NMe3
$$

The latter was identified by comparison of its IR spectrum with an authentic sample. Furthermore, the ¹H NMR spectrum of the non-volatile reaction residue, in $CH₂Cl₂$, lacked a MeAl absorption, ca. -0.5 ppm; the observed absorptions are consistent with the stoichometry $(TDT)_3Al_2 \cdot 2NMe_3$, *i.e.*, *NMe* at 2.56 ppm and aryl-Me at 2.16 ppm in the $ca.$ ratio 2:1 respectively.

When one treats initially formed $TDTA$ lMe \cdot NMe₃ with $HCCI_3$, CH_4 is quantitatively evolved while the 'H NMR spectrum exhibits absorptions at 2.77 ppm, N-Me, and 2.32 ppm, aryl *Me,* in the ratio 3:l. Previous studies have indicated that treatment of dithiolate coordinated AlMe with $HCCl₃$ results in replacement of Me by Cl [1].

With regard to TDTAlMe \cdot H₂NMe, ¹H NMR data could not be obtained because of its insolubility in non-reacting solvents, e.g., treatment with $CH₂Cl₂$ results in immediate solution, however, a white precipitate forms within a few minutes.

Experimental

Synthetic procedures and equipment employed have been previously described as have analytical methods and purification of some solvents and starting materials $[1, 2]$.

Reagents

 (5)

Diethyl ether, Anal. Reagent, Mallinckrodt Chemical Works, was dried over phosphorus pentoxide and then lithium aluminum hydride, from which it was distilled before use. Dimethylamine, The Matheson Company, was dried over sodium and fractionated prior to use. Monomethylamine, Matheson Company, was purified like dimethyl amine. Trimethylamine, The Matheson Company, was dried over lithium aluminum hydride to remove water and dimethylamine before use. Trimethylaluminumdimethylamine adduct, $Me₃Al·HNMe₂$, was prepared by condensing HNMe₂ on an equal molar amount of AlMe₃ [5]. The white crystalline product exhibited a ¹H NMR spectrum in benzene with absorptions at 1.48 *(MeN)* and 1.05 (MeAl) in the ratio 2:3 respectively. Aluminumtrimethyltrimethylamine adduct, $Me₃Al·NMe₃$, was prepared like the HNMe₂ adduct and exhibits a vapor pressure of 1 torr at 25 $^{\circ}$ C [5]. Aluminumtrimethylmonomethylamine adduct, $Me₃Al·H₂NMe$ was prepared like the HNMe₂ adduct and is stable toward CH_4 evolution to 45° [6]. Aluminumtrimethyldiethylether adduct, Me₃Al·OEt₂ was preapred by treating AlMe₃ with an equal molar quantity of OEt_2 . TDTAlMe \cdot HNMe₂ was prepared by addition of H_2TDT , 0.781 g (5.01 mmol), dissolved in ca. 30 ml methylcyclohexane, to AlMe₃, 0.3600 g (5.00 mmol), dissolved in ca. 30 ml methylcyclohexane, over a period of several hours. Methane was continuously evolved, total $= 9.9$ mmol. The white crystalline precipitate was washed, *in vucuo,* with methylcyclohexane. Anal: Calcd. for TDTAlMe. HNMe₂; Al, 11.2; CH₃ (hydrolyzable) 5.8. Found: Al, 10.9; CH₃, 5.5. IR data: $3200(m)$, $3020(sh)$, 298O(vs, nujol), 288O(vs, nujol), 2720(w), 2490(w), 1605(w), 148O(s, nujol), 137O(s, nujol), 1280(s), 1120(s), 1045(m), 995(s), 870(m,sh), 810(s), 760(m,br), 670(m,br), 590(m), 560(s), 540(sh), 520(w), and $460(w)$ cm⁻¹. When benzene was employed as the common solvent, near stoichiometric evolution of CH₄ was observed, however the products afforded a yellow brown solution. Solvent removal resulted in formation of a yellow-brown glass from which crystalline TDTAlMe \cdot HNMe₂ could not be recovered *via* attempted recrystallization from mixed alkane-benzene systems or from $CH₂Cl₂$. TDTAlMe \cdot HzNMe was prepared in cyclohexane analogous to that of TDTAIMe. HNMe₂ to afford a white crystalline with evolution of 1.96 $CH₄/Al$. The product was insoluble in benzene, $CCl₄$ and $CHCl₃$ but initially soluble in $CH₂Cl₂$ affording a white precipitate within minutes. This material was not investigated further. TDTAIMe \cdot NMe₃ was prepared analogous to that of TDTAlMe \cdot HNMe₂ to afford 1.95 CH₄/Al. The white crystalline product was unstable at 25 "C affording volatile AlMe₃ NMe₃ which was identified by comparison of its IR spectrum with that of an authentic sample. The non-volatile residue, $(TDT)_3Al_2 \cdot 2NMe_3$, exhibited a ¹H NMR spectrum in $CH₂Cl₂$ consisting of absorptions at 2.16 (Me-aryl) and 2.55 (MeN) in the ratio 1:2 respectively. IR data (nujol): 302O(vs), 2980-2920(s), 1605(m), 1470(s), 1380(s), 1290(s), 1210(m), 1115(m), 1060(s), 865(s), 810(s), 650(m), 580(s), 540(s), 475(m), and 440 cm⁻¹. TDTAlMe. NMe₃, 1.1 g (4.3 mmol) was treated with 3 ml CHCl₃ at 25 °C to afford CH₄, 4.2 mmol.

TDTAlMe \cdot OEt₂, was prepared by addition of H₂-TDT, 0.967 g (6.20 mmol), in 25 ml cyclopentane, to AlMe_3 , 0.447 g (6.21 mmol), in 30 ml cyclopentane, to afford 11.8 mmol CH_4 . TDTAlMe \cdot OEt₂ was washed with cyclopentane to afford a pale pink glass which was insoluble in CH_2Cl_2 , cyclopentane, and benzene. Reaction of TDTAlMe \cdot OEt₂, 0.932 g (3.45 mmol) with H_2O affords 3.38 mmol CH₄ and H_2 **TDT** which was recovered by extraction of the hydrostat in $CCl₄$ followed by sublimation at 25 'C, and characterization by comparison of its IR spectrum with an authentic sample, yield 0.50 g (3.2 mmol). Treatment of TDTAlMe \cdot OEt₂, 2.45 mmol, neat with HCl gas (2.90 mmol) at 24 'C over a one week period of time affords 2.32 mmol CH4. Hydrolysis of the residue affords no additional CH4

while extraction of the organic residue with CCl₄ results in the isolation of H_2TDT which was identified by its IR spectrum. Attempted solution of TDTAlMe \cdot OEt₂, 2.22 mmol in CHCl₃, 5 ml, results in CH4 evolution, 2.12 mmol.

Acknowledgement

Support of this study by the Ohio State University is appreciated.

References

- 1 A. A. Carey and E. P. Schram, *Inorg. Chim. Acta, 59, 75 (1982).*
-
- *idem., 79 (1982).*
M. E. Peach, 'The Chemistry of the Thio Group', Part II, S. Potai, Ed., Wiley, New York, N.Y., 1974, p. 721.
- 4 S. Oal, 'Organic Chemistry of Sulfur', Plenum Press, New York, N.Y., 1977, p. 157.
- 5 N. Davison and H. C. Brown, J. Am. Chem. Soc., 64, 316 (1942).
- 6 K. J. Alford, K. Gosling and J. D. Smith, *J. Chem. Sot., Dalton, 2203 (1972).*